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Abstract A mathematical model of amperometric biosensors has been developed.
In this paper, He’s variational iteration method is implemented to give approximate and
analytical solutions of non-linear reaction diffusion equations containing a non linear
term related to Michaelis–Menten kinetic of the enzymatic reaction. The variational
iteration method which produces the solutions in terms of convergent series, requiring
no linearization or small perturbation. These analytical results are compared with
available limiting case result and are found to be in good agreement.

Keywords Variational iteration method · Reaction diffusion system · Enzyme
kinetics · Nonlinear equation

1 Introduction

Considerable advances have been made during the last decade in the development
of polymer-based materials for use as electrocatalysis and as chemical and biologi-
cal sensors operating in the batch amperometric mode [1,2]. Useful summaries of
recent advances in this area has been provided by Hillman [3], Lyons [4–6], Evans [7],
Wring and Hart [8], Murray [9] Albery [10–13], Bartlett [14,15] and Rahamathunissa
and Rajendran [16]. Various simplified analytical models describing electrocatalysis
at electroactive polymer films have been developed over the last 20 years. In brief,
the analysis involves the construction and solution of reaction/diffusion differential
equations, resulting in the development of approximate analytical expressions for
the amperometric current response. The analysis is not simple since one is concer-
ned with the modeling of reaction/diffusion processes in the films (mathematically,
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this translates to reaction/diffusion with in the finite diffusion space). In many cases,
addition of the chemical reaction term to the Fick’s diffusion term during formulation
of the differential equation results in the generation of a non-linear expression which
is not readily solved using standard analytical methods.

The investigation of exact solution of nonlinear equation is interesting and impor-
tant. In the past several decades, many authors mainly had paid attention to study
solution of nonlinear equations by using various methods, such as Backlund transfor-
mation [17], Darboux transformation [18], Inverse scattering method [19], Bilinear
method [20], the tanh method [21], the sine–cosine method [22], the homogeneous
balance method [23] and variational iteration method [24,25] etc.

The variational iteration method [24–28] has been extensively worked out over a
number of years by numerous authors. The VIM was first proposed by He [24,29]
and was successfully applied to autonomous ordinary differential equations in [30] to
nonlinear polycrystalline solids [31] and other fields. This method has been proved
by many authors to be a powerful mathematical tool for various kinds of nonlinear
problems. It is a promising and evolving method. Besides its mathematical importance
and its links to other branches of mathematics, it is widely used in all ramifications
modern sciences [32]. In this method the solution procedure is very simple by means
of variational theory and only few iterations lead to high accurate solutions which are
valid for the whole solution domain.

The purpose of this paper is to derive steady state analytical solution of concen-
tration for at polymer modified electrode for all values α and K using variational
iteration method. The chosen configuration is the most used in the design of nowadays
enzymatic biosensor realizations such as the use of polymeric matrices as an enzyme
support and the mass production of biosensors by the screen printing technique [33].

2 Mathematical formulation of the problem

The enzyme kinetics in biochemical systems have usually been modeled by ordinary
differential equations which are based only on reaction without spatial dependence of
the various concentrations. Recent attention has been given to the effect of diffusion
in the process of interactions [34,35]. When this effect is taken into consideration, the
various concentrations in the reaction process are spatially dependent and the equations
governing these concentrations become partial differential equations of parabolic type
[34]. In an irreversible monoenzyme system the reaction scheme for free enzyme E
and substrate concentration S may be expressed by

E + S
KM←→ES

k2−→E + P (1)

where ES is the enzyme–substrate complex and P is the product. Suppose that the
reaction-diffusion takes place in an arbitrary n-dimensional medium � (membrane),
where � is a bounded domain in Rn(n = 1, 2, . . .). Then the rate of change of substrate
concentration S = S(t, χ) at time t , position χ ∈ � is equal to the sum of the rate
due to reaction and diffusion, and is given by Pao[34]
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∂S/∂t = DS∇ · (∇S)− υ(t, χ) (2)

where DS is the substrate diffusion coefficient, ∇ is the gradient operation and υ is
the so-called “initial reaction velocity”. Various models regarding the expression for
υ are formulated by researchers in this field. In this paper, we discuss some mathe-
matical properties of the solutions for type of such models using Michaelis–Menton
hypothesis. Based on the Michaelis hypothesis, the velocity function υ for the simple
reaction process without competitive inhibition is given by Pao [34] and Baronas et al.
[35]

υ(t, χ) = k2 E0S/(KM + S) (3)

where E0 is the total amount of enzyme and KM is the “Michaelis constant”. In this
model, the equation for S becomes

∂S/∂t − DS∇ · (∇S) = −k2 E0S/(KM + S) (t > 0, χ ∈ �). (4)

In one dimensional form Eq. 4 can be written as

∂S

∂t
= DS

∂2S

∂χ2 −
k2 E0S

KM + S
(5)

Introducing a pseudo-first order rate constant K = k2 E0/KM, we can write the above
equation as

∂S

∂t
= DS

∂2S

∂χ2 −
K S

1+ S/KM
(6)

Here we consider, an initial condition is given in the usual form,

S(0, χ) = s0(χ) (χ ∈ �) (7)

The system governs the substrate concentration S when there is no competitive inhi-
bition in the reaction. We make the non-linear PDE (Eq. 6) dimensionless by defining
the following parameters:

u = s/ks∞, x = χ/L , τ = DSt/L2, K = kL2/DS = φ2, α = ks∞/KM

(8)

where u, x and τ represent dimensionless concentrations, distance and time, respecti-
vely. Here α denotes a saturation parameter and K denotes reaction diffusion parameter.
Now the Eq. 6 reduces to the following dimensionless form:

∂u

∂τ
= ∂2u

∂x2 −
K u

1+ αu
0 < u ≤ 1 (9)

whereas the initial condition reduces to
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Fig. 1 Diagrammatic representation of saturated (zero order kinetics) and unsaturated (1st order kinetics)
catalytic kinetics

u(x = 0) = a (constant) (10)

Lyons and co-workers [1] solved the above equations only for the limiting cases
(αu � 1 and αu � 1 (refer Fig. 1) using Dirichlet and Neumann boundary conditions.
But we wish to obtain an analytical expression for the concentration profile u(x) of
substrate for all values of α. In steady state, ∂u

∂τ
= 0. In this case the steady state

diffusion Eq. 9 takes the form

∂2u

∂x2 −
K u

1+ αu
= 0 (11)

Again, this is a non-linear differential equation. Now the boundary condition (Eq. 10)
is [1]

u(0) = a = Sech
(√

K
)

for α � 1 (12a)

= 1− K/2α for α � 1 (12b)

The non-linear Eq. 11 is solved for the above boundary conditions using variatio-
nal iteration method. The variational iteration method proposed by He [24,29] has
been successfully applied to finding the solution of differential equation in closed
form. The basic concept of variational iteration method is summarized briefly here for
completeness.
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3 Basic concepts in the variational iteration method

To illustrate the basic concepts of variational iteration method (VIM), we consider the
following nonlinear partial differential equation:

L [u(x)]+ N [u(x)] = g(x) (13)

where L is a linear operator, N is a nonlinear operator, and g(x) is a given continuous
function [24,29]. According to the variational iteration method, we can construct a
correct functional as follows:

un+1(x) = un(x)+
∫ x

0
λ

[
L [un(τ )]+ N [ũn(τ )] − g(τ )

]
dτ (14)

where λ is a general Lagrange multiplier [24,29] which can be identified optimally
via variational theory, un is the nth approximate solution, and ũn denotes a restricted
variation, i.e., δũn = 0.

4 Solution of boundary value problem

Using above variation iteration method we can write the correction functional of Eq. 11
as follows

un+1(x) = un(x)+
x∫

0

λ

[
u′′n(s)−

h̄h̄h̄h̄h̄
K un(s)

1+ αun(s)

]
ds (15)

Taking variation with respect to the independent variable un , noticing that δun(0) = 0

δun+1(x) = δun(x)+ δ

x∫

0

λ

[
u′′n(s)−

h̄h̄h̄h̄h̄
K un(s)

1+ αun(s)

]
ds (16)

For all variational δun and δu′n , implying the following stationary conditions

δun : 1− λ′(s)
∣∣
s=x = 0 (17a)

δu′n : λ(s)|s=x = 0 (17b)

δun : λ′′(s)
∣∣
s=x = 0 (17c)

The Lagrange multiplier can be identified as

λ(s) = s − x (18)

Substituting the Lagrange multiplier in the iteration formula (Eq. 15) we get the fol-
lowing approximation
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u1(x) = a + K a

(1+ αa)
x2 (19)

u2(x) = a + K x2

2α
+ (1+ αa)

aα2 ln

[
K aα

2(1+ αa)2 x2 + 1

]

−
√

2K

α3/2
√

a
x tan−1

[ √
K aα√

2(1+ αa)
x

]
(20)

u3(x) = u2(x)+ K

α

[
− x2

2
− (1+ αa)

2K aα

{
− 2(1+ αa)2

(
K aαx2 + 2(1+ αa)2

)

+3

2
− 1

2
ln

(
K aαx2

2(1+ αa)2 + 1

)}
+ x2(1+ αa)(

K aαx2 + 2(1+ αa)2
)
]

−
∫ x

0
(s − x)

K u2(s)

1+ αu2(s)
ds (21)

Last term in the Eq. 21 is not integrated. Hence u3(x) is not expressed in the closed
form. Therefore we are taking u2(x) = u(x). Equation 20 represents the most general
approximate new analytical expression for the substrate concentration profiles for
all values of α and K . The time independent concentration u(x) using Eq. 20 are
represented in Figs. 2 and 3 for various values of α and K .

Fig. 2 Plot of normalized steady state substrate concentration u verses normalized distance x when
αu � 1 (Here α = 0.1) for various values of K using Eq. 20. (a) K = 0.01; (b) K = 1; (c) K = 4;
(d) K = 9; (e) K = 16
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Fig. 3 Plot of normalized steady state substrate concentration u verses normalized distance x when
αu � 1 (Here α = 15) various values of K using Eq. 20. (a) K = 0.01; (b) K = 1; (c) K = 4; (d)
K = 9; (e) K = 16

5 Limiting cases

(1) unsaturated (first order) catalytic kinetics
In this cases, the substrate concentration in the film S(χ) is less than the Michaelis
constant KM. This is explained in Fig. 1. When αu � 1, the Eq. 11 reduces to

∂2u

∂x2 − K u = 0 (22)

Using the He’s variational iteration method and boundary condition (12a), its correc-
tion functional can be written in the form

un+1(x) = un(x)+
x∫

0

λ
[
u′′n(s)− h̄h̄h̄

K un(s)

]
ds (23)

By the same manipulation, the multiplier (λ(s) = s − x) can be identified and the
following iteration formula can be obtained as

un+1(x) = un(x)+
x∫

0

(s − x)
[
u′′n(s)− h̄h̄h̄

K un(s)

]
ds (24)
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Now u1(x), u2(x), u3(x) becomes,

u1(x) = a

[
1+ K x2

2

]
(25a)

u2(x) = a

[
1+ K x2

2! +
(
K x2

)2

4!

]
(25b)

u3(x) = a

[
1+ K x2

2! +
(
K x2

)2

4! +
(
K x2

)3

6!

]
(25c)

un(x) = a
n∑

m=0

(
K x2

)m

2m! (25d)

The solution of u(x) in a closed form is

u(x) = aCosh(
√

K x) (25)

The Eq. 25 derived by us is identical with Eq. 10 in Ref. [1].
(2) saturated (zero order) catalytic kinetics

In this cases, the substrate concentration in the film S(χ) is greater than the Michaelis
constant KM (Refer Fig. 1). Hence αu � 1 reduces the Eq. 11 to

∂2u

∂x2 −
K

α
= 0 (26)

Using He’s variational iteration method and using the boundary condition (12b) its
correction functional can be written in the form

un+1(x) = un(x)+
x∫

0

λ
[
u′′n(s)− K/α)

]
ds (27)

By the same manipulation, the multiplier (λ(s) = s − x) can be identified and the
following iteration formula can be obtained as

un+1(x) = un(x)+
x∫

0

(s − x)
[
u′′n(s)− K/α

]
ds (28)

We start with initial approximation given by Eq. (12b) and by the above iteration
formula, we can obtain the Eq. (29) in a closed form

u(x) = a + K

2α
x2 (29)
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This equation is identical with Eq. 11 of Ref. [1]. This limiting case results, Eq. 25
(for α � 1) and Eq. 29 (for α � 1) are compared with our main result Eq. 20.
Tables 1 and 2 indicates the dimensionless substrate concentration evaluated using
Eq.20 with the limiting case results. The average relative difference between our
results (Eq.20) and limiting case results are −0.09, −1.26, −3.90, −8.61, −13.44%
(for α � 1) and 0,−0.11,−0.47,−1.27,−3.15% (for α � 1) when K = 0.01, 1, 4, 9
and 16, respectively.

6 Analysis of moving boundary

Considering the limiting situations for totally unsaturated kinetics when αu � 1 and
saturated kinetics when αu � 1. The outer part of the region is saturated (region
RII) and the inner region (region RI) remains unsaturated. This is illustrated in Fig. 4.
Considering a situation where the reaction kinetics are fast compared with substrate
diffusion. A moving normalized distance parameter x∗ is defined the boundary bet-
ween regions RI and RII. The substrate S diffuses into the film a reaction front is
established at x = x∗. When x∗ = 0, the entire region is saturated and when x∗ = 1,
the entire region is unsaturated. In RI, αu � 1 and in RII αu � 1. When x = x∗,
u = 1/α. Now the Eq. 20 becomes,

1

α
= a + K x∗2

2α
+ (1+ αa)

aα2 ln

[
K aα

2(1+ αa)2 x∗2 + 1

]

−
√

2K

α3/2
√

a
x∗ tan−1

[ √
K aα√

2(1+ αa)
x∗

]
(30)

Fig. 4 The description of two region approach used to obtain Eq. 32 which corresponds the situation of
moving boundary. The inner region RI is unsaturated whereas the outer region RII is saturated. The line
between these two regions is set at some value x∗ defined in Eq. 32. Complete saturation occurs when
x∗ = 0
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When K aα
2(1+αa)2 is small, we obtain,

K 2aα

12(1+ αa)3 x∗4 − K aα

2(1+ αa)
x∗2 − αa + 1 = 0 (31)

Solving the above equation to obtain x∗

x∗ =
⎡
⎣3(1+ αa)2

K

⎡
⎣1± 1√

αa

√
3α2a2 + 7αa − 4

3(1+ αa)

⎤
⎦

⎤
⎦

1/2

(32)

Equation 32 describes the position of the boundary as it moves through the film.

7 Conclusion

A nonlinear time independent partial differential equation has been formulated and
solved using He’s variational iteration method. The primary result of this work is first
accurate calculation of substrate concentration for all values of α and K . It gives good
agreement with previous published limiting case results. The extension of the proce-
dure to other two dimension and three dimension geometries with various complex
boundary conditions seems possible.

Acknowledgements The authors are pleased to acknowledge the financial support of the Department
of Science and Technology (DST), Government of India to L. Rajendran, which has allowed this work
to be undertaken. The author also thanks Prof. A. K. Shukla, Director, CECRI, Karaikudi, India and
MR. Valliappan, Headmaster, SMSV Higher Secondary School for their encouragement. Useful discussions
with Dr. C. A. Basha, Dy. Director, Pollution Control, CECRI, Karaikudi are gratefully acknowledged.

References

1. M.E.G. Lyons, J.C. Greer, C.A. Fitzgerald, T. Bannon, P.N. Bartlett, Analyst 121, 715 (1996)
2. M.E.G. Lyons, T. Bannon, G. Hinds, S. Rebouillat, Analyst 123, 1947 (1998)
3. A.R. Hillman, in Electrochemical Science and Technology of Polymers, ed. by R.G. Linford (Elsevier,

Amsterdam, 1987), pp. 103–291
4. M.E.G. Lyons, Electrochemistry novel interfaces and macromolecular electroactive systems. Ann. Rep.

C. R. Soc. Chem. 87, 119–171 (1990)
5. M.E.G. Lyons, in Electroactive Polymer Electrochemistry: Part I, Fundamentals, ed. by M.E.G. Lyons

(Plenum Press, New York, 1994), pp. 237–374
6. M.E.G. Lyons, Analyst 119, 805 (1994)
7. G.P. Evans, in Advances in Electrochemical Science and Engineering, vol. 1, ed. by H. Gerisher,

C.W. Tobias (VCH, Weinheim, 1990), pp. 1–74
8. S.A. Wring, J.P. Hart, Analyst 117, 1215 (1992)
9. C.P. Andrieux, J.M. Saveant, in Molecular Design of Electrode Surfaces, ed. by R.W. Murray. Tech-

niques of Chemistry Series, vol. XXII (Wiley-Interscience, New York, 1992), pp. 207–270
10. W.J. Albery, A.R. Hillman, J. Electroanal. Chem. 170, 27 (1984)
11. W.J. Albery, A.E.G. Cass, Z.X. Shu, Biosens. Bioelectron. 5, 367 (1990)
12. W.J. Albery, A.E.G. Cass, Z.X. Shu, Biosens. Bioelectron. 5, 379 (1990)
13. W.J. Albery, A.E.G. Cass, Z.X. Shu, Biosens. Bioelectron. 5, 397 (1990)
14. P.N. Bartlett, P.R. Birkin, E.N.K. Wallace, J. Chem. Soc. Faraday Trans. 93, 1951–1960 (1997)
15. P.N. Bartlett, J.W. Gardner, Phil. Trans. R. Soc. Lond. A 354, 35 (1996)

123



J Math Chem (2008) 44:849–861 861

16. G. Rahamathunissa, L. Rajendran, J. Theor. Comput. Chem. (2007) (in press)
17. A. Coely et al. (eds.), Backlund and Darboux Tranformation (American Mathematical Society, Provi-

dence, RI, 2001)
18. M. Wadati, H. Sanuki, K. Konno, Prog. Theor. Phys. 53, 419 (1975)
19. C.S. Gardner, J.M. Green, M.D. Kruskal, R.M. Miura, Phys. Rev. Lett. 19, 1095 (1967)
20. R. Hirota, Phys. Rev. Lett. 27, 1192 (1971)
21. W. Malfliet, Am. J. Phys. 60, 650 (1992)
22. J.H. He, J. Comput. Appl. Math. 207, 3 (2007) and reference therein
23. S.-Q. Wang, J.-H. He, Chaos Solitons Fractals 35(4), 688 (2008)
24. J.H. He, Comput. Methods Appl. Mech. Eng. 167(1–2), 57 (1998)
25. J.H. He, Int. J. Nonlinear Mech. 34(4), 699 (1999)
26. J.H. He, X.H. Wu, Chaos Solitons Fractals 29(1) 108 (2006)
27. J.-H. He, M.A. Abdou, Chaos Solitons Fractals 34(5), 1421 (2007)
28. J.-H. He, Chaos Solitons Fractals 34(5), 1430 (2007)
29. J.H. He, Comm. Nonlinear Sci. Numer. Simulat. 2(4), 230 (1997)
30. J.H. He, Appl. Math. Comput. 114(2, 3), 115 (2000)
31. V. Marinca, Int. J. Nonlinear Sci. Numer. Simulat. 3, 107 (2002)
32. J.H. He, J. Comput. Appl. Math. 207, 1 (2007)
33. A. Benyahia, S. Bacha, Numerical simulation of amperometric biosensors performances. Proceedings

16th European Simulation Symposium
34. C.V. Pao, Nonlinear Anal. Theor. 4(2), 369 (1979)
35. R. Baronas, F. Ivanauskas, J. Kulys, M. Sapagovas, J. Math. Chem. 34, 227 (2003)

123


	Application of He's variational iteration methodin nonlinear boundary value problems in enzyme--substrate reaction diffusion processes: part 1.The steady-state amperometric response
	Abstract
	1 Introduction
	2 Mathematical formulation of the problem
	3 Basic concepts in the variational iteration method
	4 Solution of boundary value problem
	5 Limiting cases
	6 Analysis of moving boundary
	7 Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


